Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors.

نویسندگان

  • H von Gersdorff
  • R Schneggenburger
  • S Weis
  • E Neher
چکیده

Synaptic depression of evoked EPSCs was quantified with stimulation frequencies ranging from 0.2 to 100 Hz at the single CNS synapse formed by the calyx of Held in the rat brainstem. Half-maximal depression occurred at approximately 1 Hz, with 10 and 100 Hz stimulation frequencies reducing EPSC amplitudes to approximately 30% and approximately 10% of their initial magnitude, respectively. The time constant of recovery from depression elicited by 10 Hz afferent fiber stimulation was 4.2 sec. AMPA and NMDA receptor-mediated EPSCs depressed in parallel at 1-5 Hz stimulation frequencies, suggesting that depression was induced by presynaptic mechanism(s) that reduced glutamate release. To determine the contribution of autoreceptors to depression, we studied the inhibitory effects of the metabotropic glutamate receptor (mGluR) agonists (1S, 3S)-ACPD and L-AP4 and found them to be reversed in a dose-dependent manner by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG), a novel and potent competitive antagonist of mGluRs. At 300 microM, CPPG completely reversed the effects of L-AP4 and (1S, 3S)-ACPD, but reduced 5-10 Hz elicited depression by only approximately 6%. CPPG-sensitive mGluRs, presumably activated by glutamate spillover during physiological synaptic transmission, thus contribute on the order of only 10% to short-term synaptic depression. We therefore suggest that the main mechanism contributing to the robust depression elicited by 5-10 Hz afferent fiber stimulation of the calyx of Held synapse is synaptic vesicle pool depletion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse.

We investigated the mechanisms by which activation of group I metabotropic glutamate receptors (mGluRs) and CB1 cannabinoid receptors (CB1Rs) leads to inhibition of synaptic currents at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) of the rat auditory brainstem. In approximately 50% of the MNTB neurons tested, activation of group I mGluRs by the specific agonist (...

متن کامل

GTP-binding protein bg subunits mediate presynaptic calcium current inhibition by GABAB receptor

A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic g-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic PyQ-type Ca21 channel currents vi...

متن کامل

Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release.

The mammalian auditory brain stem receives profuse adrenergic innervation, whose function is poorly understood. Here we investigate, during postnatal development, the effect of noradrenaline (NA) at the calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB). We observed that NA inhibits the large glutamatergic EPSC, evoked by afferent fiber stimulation, in a dose-dependent...

متن کامل

Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of Held synapses.

We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1 microm LY341495 (2S-2-...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 21  شماره 

صفحات  -

تاریخ انتشار 1997